organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rohan A. Davis,^a Peter C. Healy^b* and Sally-Ann Poulsen^b

^aNatural Product Discovery, Eskitis Institute, Griffith University, Nathan, Brisbane 4111, Australia, and ^bChemical Biology Group, Eskitis Institute, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: P.Healy@griffith.edu.au

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.039 wR factor = 0.111 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-{2-[4-(Aminosulfonyl)phenyl]ethyl}-2-(4-hydroxy-phenyl)acetamide

The crystal structure of the title sulfonamide, $C_{16}H_{18}N_2O_4S$, is stabilized by strong $N-H\cdots O$ and $O-H\cdots O$ intermolecular hydrogen bonds.

Received 27 November 2006 Accepted 27 November 2006

Comment

The title compound, (I) (Fig. 1), was synthesized during structure-activity investigations aimed at optimizing the natural product template for bovine carbonic anhydrase II inhibition (Poulsen *et al.*, 2006). The amide group is almost planar $[C9-N1-C8-O8 = -3.6 (3)^{\circ}]$, with the carbonyl and NH bonds adopting a *trans* configuration. The *p*-hydroxy-phenyl group folds back over the aminosulfonylphenyl group with a dihedral angle of 76.2 (1)° between the mean planes of the two benzene rings.

The crystal structure is characterized by a network of strong intermolecular $N-H\cdots O$ hydrogen bonds between the

© 2007 International Union of Crystallography All rights reserved

A view of the molecular structure of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

sulfonamido and amide H atoms and the sulfonamide, ketone and hydroxy O atoms, and $O-H\cdots O$ hydrogen bonds between the hydroxyl group and the ketone O-atom acceptor (Table 1).

Experimental

The title compound was prepared as previously reported (Poulsen *et al.*, 2006). Crystals of (I) suitable for X-ray diffraction studies were obtained by slow evaporation of a methanol solution of the compound (m.p. 476-478 K).

Crystal data

 $C_{16}H_{18}N_2O_4S$ $M_r = 334.39$ Monoclinic, $P2_1/n$ a = 15.715 (3) Å b = 10.250 (2) Å c = 9.819 (3) Å $\beta = 91.862$ (18)° V = 1580.8 (6) Å³

Data collection

Rigaku AFC-7R diffractometer ω -2 θ scans Absorption correction: none 3219 measured reflections 2779 independent reflections 2100 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.111$ S = 1.032779 reflections 208 parameters H-atom parameters constrained Z = 4 $D_x = 1.405 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 295 KPrism, colorless $0.40 \times 0.30 \times 0.20 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.037 \\ \theta_{\rm max} &= 25.0^{\circ} \\ 3 \text{ standard reflections} \\ \text{every 150 reflections} \\ \text{intensity decay: } 0.8\% \end{split}$$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0568P)^2 \\ &+ 0.3548P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.19 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.37 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O11^{i}$	0.86	2.22	2.909 (2)	138
$N2 - H2A \cdots O8^{ii}$	0.87	2.09	2.951 (2)	174
$N2 - H2B \cdot \cdot \cdot O4^{iii}$	0.87	2.19	3.001 (3)	155
$O4-H4\cdots O8^{iv}$	0.86	1.86	2.698 (2)	165

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y, -z; (iii) x, y + 1, z; (iv) $x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$.

The H atoms were positioned geometrically (C–H = 0.94–0.96 Å, N–H = 0.86–0.87 Å and O–H = 0.86 Å) and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm carrier}).$

Data collection: *MSC/AFC7 Diffractometer Control for Windows* (Molecular Structure Corporation, 1999); cell refinement: *MSC/AFC7 Diffractometer Control for Windows*; data reduction: *TEXSAN* for Windows (Molecular Structure Corporation, 2001); program(s) used to solve structure: *TEXSAN* for Windows; program(s) used to refine structure: *TEXSAN* for Windows and *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *TEXSAN* for Windows and *PLATON* (Spek, 2003).

We acknowledge financial support of this work by Griffith University, Eskitis Institute of Cell and Molecular Therapies, Griffith University, and Natural Product Discovery, Griffith University.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control for Windows. Version 1.02. MSC, The Woodlands, Texas, USA.

Molecular Structure Corporation (2001). *TEXSAN for Windows*. Version 1.06. MSC, The Woodlands, Texas, USA.

Poulsen, S.-A., Davis, R. A. & Keys, T. G. (2006). *Bioorg. Med. Chem.* 14, 510–515.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.